17 research outputs found

    ISAR Autofocus Imaging Algorithm for Maneuvering Targets Based on Phase Retrieval and Gabor Wavelet Transform

    Get PDF
    The imaging issue of a rotating maneuvering target with a large angle and a high translational speed has been a challenging problem in the area of inverse synthetic aperture radar (ISAR) autofocus imaging, in particular when the target has both radial and angular accelerations. In this paper, on the basis of the phase retrieval algorithm and the Gabor wavelet transform (GWT), we propose a new method for phase error correction. The approach first performs the range compression on ISAR raw data to obtain range profiles, and then carries out the GWT transform as the time-frequency analysis tool for the rotational motion compensation (RMC) requirement. The time-varying terms, caused by rotational motion in the Doppler frequency shift, are able to be eliminated at the selected time frame. Furthermore, the processed backscattered signal is transformed to the one in the frequency domain while applying the phase retrieval to run the translational motion compensation (TMC). Phase retrieval plays an important role in range tracking, because the ISAR echo module is not affected by both radial velocity and the acceleration of the target. Finally, after the removal of both the rotational and translational motion errors, the time-invariant Doppler shift is generated, and radar returned signals from the same scatterer are always kept in the same range cell. Therefore, the unwanted motion effects can be removed by applying this approach to have an autofocused ISAR image of the maneuvering target. Furthermore, the method does not need to estimate any motion parameters of the maneuvering target, which has proven to be very effective for an ideal range–Doppler processing. Experimental and simulation results verify the feasibility of this approach

    RSG: Fast Learning Adaptive Skills for Quadruped Robots by Skill Graph

    Full text link
    Developing robotic intelligent systems that can adapt quickly to unseen wild situations is one of the critical challenges in pursuing autonomous robotics. Although some impressive progress has been made in walking stability and skill learning in the field of legged robots, their ability to fast adaptation is still inferior to that of animals in nature. Animals are born with massive skills needed to survive, and can quickly acquire new ones, by composing fundamental skills with limited experience. Inspired by this, we propose a novel framework, named Robot Skill Graph (RSG) for organizing massive fundamental skills of robots and dexterously reusing them for fast adaptation. Bearing a structure similar to the Knowledge Graph (KG), RSG is composed of massive dynamic behavioral skills instead of static knowledge in KG and enables discovering implicit relations that exist in be-tween of learning context and acquired skills of robots, serving as a starting point for understanding subtle patterns existing in robots' skill learning. Extensive experimental results demonstrate that RSG can provide rational skill inference upon new tasks and environments and enable quadruped robots to adapt to new scenarios and learn new skills rapidly

    SAR imaging method based on coprime sampling and nested sparse sampling

    No full text

    Propagation and imaging analysis of vortex acoustic waves in ocean turbulence

    No full text
    Abstract Vortex acoustic waves (VAW) with helical phase wavefronts could provide a new dimension for the detection and imaging of targets in the ocean. To explore the propagation characteristics of VAW under the effect of ocean turbulence (OT) and the impact on imaging, the phase screen method is used to simulate the propagation of VAW generated by a phase‐modulated uniform circular array under the effect of OT and the imaging of the target. The phase change and detection probability under the influence of the acoustic wave parameters and OT parameters during the propagation process are studied. Second, the azimuth resolution performance and focussing performance of the target imaging are studied. Under the effect of OT, the VAW of different frequencies and topological modes become scattered, and the degree of scattering is different when the parameters are different; and the resolution performance and focussing performance have also deteriorated. However, the VAW still has a reliable resolution under the effect of medium and low‐intensity OT, which provides theoretical support for the practice of the VAW in underwater target imaging

    ISAR Autofocus Imaging Algorithm for Maneuvering Targets Based on Phase Retrieval and Gabor Wavelet Transform

    Get PDF
    The imaging issue of a rotating maneuvering target with a large angle and a high translational speed has been a challenging problem in the area of inverse synthetic aperture radar (ISAR) autofocus imaging, in particular when the target has both radial and angular accelerations. In this paper, on the basis of the phase retrieval algorithm and the Gabor wavelet transform (GWT), we propose a new method for phase error correction. The approach first performs the range compression on ISAR raw data to obtain range profiles, and then carries out the GWT transform as the time-frequency analysis tool for the rotational motion compensation (RMC) requirement. The time-varying terms, caused by rotational motion in the Doppler frequency shift, are able to be eliminated at the selected time frame. Furthermore, the processed backscattered signal is transformed to the one in the frequency domain while applying the phase retrieval to run the translational motion compensation (TMC). Phase retrieval plays an important role in range tracking, because the ISAR echo module is not affected by both radial velocity and the acceleration of the target. Finally, after the removal of both the rotational and translational motion errors, the time-invariant Doppler shift is generated, and radar returned signals from the same scatterer are always kept in the same range cell. Therefore, the unwanted motion effects can be removed by applying this approach to have an autofocused ISAR image of the maneuvering target. Furthermore, the method does not need to estimate any motion parameters of the maneuvering target, which has proven to be very effective for an ideal range⁻Doppler processing. Experimental and simulation results verify the feasibility of this approach

    Turbulence compensation for radar imaging carrying orbital angular momentum based on convolutional neural network

    No full text
    The spiral phase front (SPF) and orbital angular momentum (OAM) of vortex electromagnetic waves (VEMW) have attracted extensive attention in radar imaging. However, VEMW is extremely sensitive to atmospheric turbulence (AT), which will lead to distortion of the SPF and diffusion of the OAM modes. Furthermore, refractive-index fluctuations will cause absorption and fluctuations in the speed of VEMW. Specifically, SPF distortion leads to phase errors, which is demonstrated as defocus of the scatterer in the image. Atmospheric absorption and fluctuations in VEMW speed suffer amplitude error and phase error, which are manifested as amplitude variation with range and positioning errors, respectively. Generally, refractive-index fluctuations feature significant spatial and temporal variability, making it difficult for conventional algorithms to obtain accurate compensation. In this paper, a data-driven-based convolutional neural network (CNN) approach is proposed to improve imaging performance. The CNN is taken to learn the mapping function of images with atmospheric errors to label images without turbulence effects, and then the trained CNN model is integrated into imaging system to improve the imaging quality. The numerical simulation verifies that the method can effectively compensate for turbulence effects and obtain high-resolution images

    SAR imaging method for sea scene target based on improved phase retrieval algorithm

    No full text

    Non-Stationary Platform Inverse Synthetic Aperture Radar Maneuvering Target Imaging Based on Phase Retrieval

    Get PDF
    As a powerful signal processing tool for imaging moving targets, placing radar on a non-stationary platform (such as an aerostat) is a future direction of Inverse Synthetic Aperture Radar (ISAR) systems. However, more phase errors are introduced into the received signal due to the instability of the radar platform, making it difficult for popular algorithms to accurately perform motion compensation, which leads to severe effects in the resultant ISAR images. Moreover, maneuvering targets may have complex motion whose motion parameters are unknown to radar systems. To overcome the issue of non-stationary platform ISAR autofocus imaging, a high-resolution imaging method based on the phase retrieval principle is proposed in this paper. Firstly, based on the spatial geometric and echo models of the ISAR maneuvering target, we can deduce that the radial motion of the radar platform or the vibration does not affect the modulus of the ISAR echo signal, which provides a theoretical basis for the phase recovery theory for the ISAR imaging. Then, we propose an oversampling smoothness (OSS) phase retrieval algorithm with prior information, namely, the phase of the blurred image obtained by the classical imaging algorithm replaces the initial random phase in the original OSS algorithm. In addition, the size of the support domain of the OSS algorithm is set with respect to the blurred target image. Experimental simulation shows that compared with classical imaging methods, the proposed method can obtain the resultant motion-compensated ISAR image without estimating the radar platform and maneuvering target motion parameters, wherein the fictitious target is perfectly focused
    corecore